
Modifying a dynamic linked binary File Descriptor Table

(FDT) at runtime catching the sys write(); and

sys writev(); system calls via Kprobes[4].

T. Castillo Girona

<toni.castillo@fa.upc.edu>

September 2, 2009

Abstract

In this article we will discuss how MODEST can catch any sys write(); and
sys writev(); system calls using Kprobes. This way, MODEST will be able to intercept,
capture and redirect any data written by processes linked in a dynamic way.

1 Introduction

Some time ago, int $0x80 was the only way
for a process to request a kernel routine. This
matter was extensively described and stud-
ied in the previous white-paper concerning our
MODEST project[3]. Now, it is time to fo-
cuss on another way to do that, that is: the
sysenter/sysexit functions’ pair.

Now, any modern Operating System - not
only GNU/Linux -, should implement both
methods to switch from Ring 3 to Ring 0. In
the particular case of GNU/Linux, as seen in
our previous study, the static binaries use the
old-way int $0x80, whereas the dynamic ones
use sysenter/sysexit functions. Due to this,
MODEST was not able to catch the system
calls requested by any dynamic binary.

To fix this issue, the latest MODEST imple-
mentation module uses Kprobes. Kprobes is
fully described in the GNU/Linux Kernel doc-
umentation. Kprobes can aid a lot when we
are in need of debugging any instruction inside
the GNU/Linux Kernel, also the interrupt han-
dlers. This way, all we need to do is to study

how Kprobes works, and then adjust it to our
problem.

Thus, this article is splitted in two main
parts: the first one talks about Kprobes it-
self; the latest one explains how MODEST was
modified so as to use Kprobes to accomplish its
goal.

2 Kprobes at a glance

According to the Kernel documentation, there
are three different ways to probe a Kernel rou-
tine: Kprobes, Jprobes and Kretprobes.
The first one can be inserted in any Kernel in-
struction. The second one can be inserted at
the entry point of any Kernel function. The
latest one is used when a Kernel function re-
turns.

2.1 Determining where Kprobe

should be inserted

Kprobes can be inserted at any Kernel instruc-
tion. That means putting a handler anywhere
inside the GNU/Linux kernel code. It is fea-

sible, for example, to put this handler at any
address inside the Kernel’s code segment. As
soon as the probed instruction will be reached,
this handler will be executed. It is quite obvi-
ous that we must know exactly where we have
to install this handler routine before doing it.

When it comes to adding a probe point
somewhere inside the Kernel code, we can
start taking a look at /proc/kallsyms 1 or
at /boot/System.map files. Either way, the
address for any symbol will be right there, as
shown in Figure 1.

Thus, if we are planning to probe, say, the
sysenter past esp instruction, we have to in-
stall our probe handler at 0xc102bbb address.

2.2 Kernel aids to determine the

probe address

We can skip reading those files directly
to determine the address of any de-
sired symbol using the Kernel function
kallsyms lookup name();. Bear in mind
these addresses will not be the same on
different computers, CPU archs or compilers
versions.

2.3 The handlers

As described in the GNU/Linux Kernel docu-
mentation concerning kprobes, there are three
different handlers, each one executed at three
different moments: a pre-handler, executed
just before running the probed instruction; a
post-handler, executed as soon as the probed
instruction finishes; and a fail-handler, exe-
cuted if something goes wrong during the pre
or post handlers’ execution.

All of them have a parameter called pt regs,
a C structure which stores all data stored in
the CPU-dependant registers when the probed
instruction was hit or when it ends.

1 This proc special file will be available only in case
of enabling the Kernel config option CONFIG KALLSYMS.

Thanks to this data structure, we can
retrieve any CPU register value at the
time. This data structure is defined in the
include/asm-i386/ptrace.h header file. For
example, during a system call request using
the sysenter/sysexit functions’ pair, as dis-
cussed below, the eax register stores the sys-
tem call function number to be executed. So,
to obtain this function number, we can read the
eax field inside the pt regs structure directly,
in a C-high style language, skipping inline as-
sembly code, as shown in Figure 2.

3 Using Kprobes inside

MODEST

As previously discussed, dynamic binaries,
in modern GNU/Linux Kernels, request any
system call using the sysenter/sysexit func-
tions’ pair on Intel architectures. In fact,
any dynamic process request a Kernel rou-
tine through the glibc, which, in turn, call
the kernel vsyscall function. This function,
attached to all of the processes running in
the system’ address space, could be a call to
the old-days int $0x80 or a call to the new
sysenter/sysexit mechanism. This way, it
is feasible to allow either the old or the new
system calls mechanism on the same computer.

3.1 Issuing a system call

As shown in Figure 3, the first three lines of
asm code copy the parameters passed to the
write(); system call from user stack to the
CPU-registers, quite similar when it comes to
the int $0x80 IDT method. Then, the fourth
line puts the value $0x4 in eax CPU-register,
that is, the NR write system call.

To issue the call, instead of using the
classic int instruction, the glibc executes
call *%gs2:0x10 instruction. In short,

2 This register points to the Thread Control

http://kmodest.sf.net 2

...
c0102bb4 T sysenter entry
c0102bbb t sysenter past esp
c0102c34 T system call
...

Figure 1: The file /boot/System.map

...

#include <linux/syscalls.h>

#include <linux/kprobes.h>

...
int kprobe prehandler (struct kprobe *p , struct pt regs *regs){

if(regs->eax == NR write)
...

}

...

Figure 2: Using pt regs data structure directly

@[%gs+0x10] stores the function described
previously, kernel vsyscall(). So, as soon
as this call is performed, the write system call
will be executed[11].

The offset $0x10 could be different on other
systems, of course.

3.2 Choosing where to put the han-

dler

The sysenter mechanism is implemented in
the file arch/i386/kernel/entry.S. Taking a
look at this asembly source file, we can observe
that we could probe exactly this entry point to
the Kernel. But we cannot do that just in the
sysenter entry point itself but a few lines be-
low, in the label sysenter past esp. Part of
this code is shown in the Figure 5.

In short, the current macro will be able
to pick the task struct * data structure

Block (TCB), which, in turn, stores the AT SYSINFO

address. This way, any process can find the address of
the kernel vsyscall() function[11].

up for the process issuing the system call
right after executing the instruction movl

TSS sysenter esp0(%esp),%esp [5]. So, as
soon as the sysenter mechanism reachs the first
instruction sti placed in sysenter past esp

address, a handler should be executed. In
other words, all we need to implement con-
cerning Kprobes will be a pre-handler installed
just at this offset. We do not know the ex-
act address of the sysenter past esp label,
of course, but we can get it easily using the
Kernel aid kallsyms lookup name, introduced
earlier in this paper.

Therefore, the initialization code for
Kprobes is shown in Figure 5. We do not need
a post-handler. Maybe it could be a good idea
to write a fault handler, to keep an eye over
all possibe errors when calling our pre-handler
routine. However, the current release of
kmodest.ko module does not implement a
fault handler.

http://kmodest.sf.net 3

0xb7ed77db <write+11>: mov 0x10(%esp),%edx
0xb7ed77df <write+15>: mov 0xc(%esp),%ecx
0xb7ed77e3 <write+19>: mov 0x8(%esp),%ebx
0xb7ed77e7 <write+23>: mov $0x4,%eax
0xb7ed77ec <write+28>: call *%gs:0x10

Figure 3: GDB debugging session showing a call to the write(); system call

ENTRY(sysenter entry)

CFI STARTPROC simple

CFI DEF CFA esp, 0

CFI REGISTER esp, ebp

movl TSS sysenter esp0(%esp),%esp

sysenter past esp:

/*

* No need to follow this irqs on/off section: the syscall

* disabled irqs and here we enable it straight after entry:

*/

sti

...

Figure 4: GNU/Linux i386 sysenter entry point.

3.3 Catching the sys write and

sys writev system calls using

the pre-handler

Our pre-handler C code is shown in Figure 7.
It is quite easy to understand, merely a few
lines quite simmilar to the handler designed to
catch the IDT int $0x80 instruction.

This time, however, the parameters trans-
fered to the system call can be retrieved read-
ing the pt regs data structure, described pre-
viously, using C code with no need of imple-
menting low-level asm code. After determining
what kind of system call is being requested -
that is, NR write or NR writev -, the pre-
handler must call the operating system sched-
uler before executing our own implementations
for these calls, that is, the my sys write and
my sys writev routines.

Reading about Kprobes, any code inside our

pre-handler function should not sleep. That is
because of the fact that the Kprobe code will
be always executed with disabled interrupts,
and it is not allowed - for security reasons -,
to write code which can sleep as long as the
interrupts are disabled.

To solve this issue, the pre-handler runs a
call to the schedule() function.

When our module, kmodest.ko, loads,
prints out the addresses of the original probed
point - in this case, the sysenter past esp

label -, and of the pre-handler - that is, the
kprobe prehandler() routine we are talking
about -, as shown in Figure 6.

4 Conclussions

Now, MODEST project is allowed to redirect
any I/O system call through the ”-c” umod-

http://kmodest.sf.net 4

...

kprobe s.pre handler = kprobe prehandler;

kprobe s.post handler = NULL;

kprobe s.fault handler = NULL;

kprobe s.addr = (kprobe opcode t *)kallsyms lookup name("sysenter past esp");

...

Figure 5: Installing a pre-handler at sysenter past esp address.

(...): @ new syscall (int $0x80) at: 0xd0a3c878

(...): @ sysenter past esp at: 0xc0102bbb , catched by 0xd0a3c7d8

Figure 6: Printing out the addresses for the original probed point and the pre-handler

est flag and, at the same time, to ”peep” the
write() and writev() system calls using the
”-d” umodest flag. So, MODEST can be used
either with static or dynamic binaries.

The new approach concerning sysenter
mechanism is quite easy to develop or under-
stand. With merely a few code lines, any
developer can accomplish a lot of hazardous
tasks simply by avoiding low-level asm code
in front of these useful and easy-to-use Kernel
aids well-known as Kprobes.

It seems quite obvious that the code in-
volving the IDT should be modified so as
to avoid using asm code - that is, the
syscalls entry.S file -. This way, instead
of having two different handlers - one for the
sysenter and another one for the IDT itself -,
the LKM would have only one handler, shared
between the two GNU/Linux Kernel mecha-
nisms to enter Ring 0. This will be done in
MODEST’s upcomings revisions.

Now, the main effort will be focussed on
skipping the use of a user process - in our par-
ticular case it is called umodest -, for opening
the new file descriptor, that is, the fd’, at first
instance. Therefore, the LKM will have to do
it on its own. Thus, there will be no SEG-

FAULTS related behaviours when it comes to
killing the umodest process accidentally.

5 License

This work is licensed under the Creative

Commons Attribution-No Derivative

Works 2.5 Spain License.
So as to view a copy of this license:

• (a) visit http://creativecommons.org/licenses/by-
nd/2.5/es/deed.ca

• (b) send a letter to:
Creative Commons
171 2nd Street, Suite 300
San Francisco, California 94105, USA

http://kmodest.sf.net 5

int kprobe prehandler (struct kprobe *p , struct pt regs *regs){

if(pid affected!=-1&&(regs->eax== NR write||regs->eax== NR writev)){

bytes to read = regs->edx;

userfd = regs->ebx;

memory = (const char user *)regs->ecx;

if(pid affected==current->pid && userfd==oldfd){
switch(regs->eax){

case NR write:

schedule();

my sys write(krn fd, memory, bytes to read);

break;

case NR writev:

schedule();

my sys writev(krn fd,(const struct iovec user*)memory,

bytes to read);

break;

}
}

} return 0;

}

Figure 7: The kprobes prehandler() routine.

http://kmodest.sf.net 6

References

[1] MODEST project homepage
http://kmodest.sf.net
http://www.sourceforge.net/projects/kmodest

[2] Disbaux.es, MODEST page for news concerning this project
http://disbaux.es/author/tonicas

[3] Modifying a process File Descriptor Table (FDT) at runtime
T. Castillo, F. Verdugo & J. Hornos.
Available at http://kmodest.sf.net

[4] Kprobes kernel mainstream documentation.
Documentation/kprobes.txt

[5] Understanding the Linux Kernel, 3rd edition
http://oreilly.com/catalog/9780596005658/?CMP=AFCak book&ATT=Understanding+
the+Linux+Kernel

[6] Essential Linux Device Drivers
http://www.pearson.ch/Informatik/PrenticeHall/1471/9780132396554/Essential-Linux-
Device-Drivers.aspx

[7] GCC Inline assembly HOW-TO
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

[8] ATT assembly language syntax reference
http://sig9.com/articles/att-syntax

[9] Intel X86 Instruction Set Reference A-M
http://download.intel.com/design/processor/manuals/253666.pdf

[10] Intel X86 Instruction Set Reference N-Z
http://download.intel.com/design/processor/manuals/253667.pdf

[11] Sysenter based System Call mechanism in GNU/Linux 2.6
http://www.manugarg.com

http://kmodest.sf.net 7

	Introduction
	Kprobes at a glance
	Determining where Kprobe should be inserted
	Kernel aids to determine the probe address
	The handlers

	Using Kprobes inside MODEST
	Issuing a system call
	Choosing where to put the handler
	Catching the sys_write and sys_writev system calls using the pre-handler

	Conclussions
	License

